
 ISSN 2454-9924

DESIGN AND IMPLEMENTATION OF AREA EFFICIENT TERNARY OPERAND ADDER FOR

MODULAR ARITHMETIC

Nallipogula Mounika1, A.Balachandra Reddy2
1 M.tech scholar, Dept of ECE (VLSI), Sree Rama Engineering College, Tirupati, A.P., India

Email Id: mouni4056@gmail.com
2 Associate Professor, Dept. of ECE, Sree Rama Engineering College, Tirupati, A.P., India

Email Id: balutest@gmail.com

Abstract— Parallel Prefix Adders have been

established as the most efficient circuits for binary

addition. Their regular structure and fast performance

makes them particularly attractive for VLSI

implementation. In many cryptography and

pseudorandom bit generator (PRBG) methods, the

fundamental functional unit is a three-operand binary

adder that performs modular arithmetic. The carry

save adder is a popular method for doing three-

operand addition. The ripple-carry stage of the Carry

save adder, on the other hand, results in a large

propagation delay. Furthermore, a parallel prefix

two-operand adder like Han-Carlson (HCA) can be

utilized for three-operand addition, which

significantly decreases the critical path time at the

expense of extra hardware. In this method, for the

purpose of three operand addition sklansky parallel

prefix adder is used to improve performance of three

operand adder in terms of Hardware efficiency.

 Keywords—CSA (Carry save adder), sklansky

adder,

I. INTRODUCTION

Three operand additions is the most commonly used

in modular multiplication which are widely used in

cryptography applications. For maintaining optimum

system performance along with retaining physical

security, cryptography algorithms must be

implemented on hardware [1]. In the cryptographic

applications, modular arithmetic is used in which the

three operand adder is the basic block [4]. In these

applications which involve modular arithmetic, three

operand addition is required it is basic fundamental

operation in these application. Hence designing an

efficient three operand adder is the need of the day.

With the rapid advancement in data communication,

internet services data privacy can become an

important issue to be dealt with. To provide security,

cryptographic applications are mostly used. Three

operand adders is the basic fundamental unit used in

this cryptography applications and modular

arithmetic. So the overall performance of Modular

arithmetic and cryptographic applications depends

on the fundamental blocks used. Based on this

fundamental module, the performance of the top

module varies.

When the addition is done between two operands or

two input n-bit numbers, the adder is referred to as a

two operand adder. For implementing two operand

operations, different types of adders named as ripple

carry adders (RCA), parallel prefix adders (PPA),

carry skip adders (CSKA), and so on are available.

Consider ripple carry adder. It is the most commonly

used adder for performing two operand addition.it is

simply designed by cascading the 1 bit full adder

cells. The n-bit RCA is depicted in the figure below.

 Fig.1 n-bit RCA

The Major drawback in this adder is its critical path

delay. The second full adder has wait until the first

full adder operation is performed. Similarly for

performing n-bit addition it has to wait until (n-1)

operation. Hence delay is more in case of ripple carry

adder.

Consider carry skip adder. In this adder based on the

skip logic, the carry will be either propagated or

skipped. When carry is skipped the delay is

mailto:mouni4056@gmail.com
mailto:balutest@gmail.com

 ISSN 2454-9924

effectively reduced. But the carry is skipped only for

one case. But in the remaining cases the carry is

being propagated which significantly impacts the

performance of the adder and only the application it

is used. The block diagram of carry skip adder is

shown below.

From the figure 2, it can be observed that carry

Propagation in the above adder is skipped only if all

the propagate signals that are individually generated

from all the individual full adders is logic high and

for the other cases the carry is propagated. The

CSKA Performance is improved compared to RCA.

But the Speed in this adder is not as effectively

improved.

Fig.2 Logic diagram of Carry Skip Adder(CSKA)

Consider parallel prefix adder. In parallel prefix

adder, the entire operation is performed in three

stages to produce the final sum output. They are

1. Pre-processing.

2. Generation of carry.

3. Final processing.

Pre-processing: In this stage, from the inputs

operands A and B, the propagate and generate signals

are generated.

𝑃𝑖 = 𝐴𝑖𝐵𝑖 … … (1)

𝐺𝑖 = 𝐴𝑖. 𝐵𝑖 … … (2)

Generation of carry: Here in this case, the using

propagate and generate signals, the carry is generated

for each bit. The operation performed in this stage is

parallel. The expressions for are shown below

𝑃(𝑖:𝑘) = 𝑃(𝑖:𝑗) ∙ 𝑃(𝑗−1:𝑘) … … (3)

𝐺(𝑖:𝑘) = 𝐺(𝑖:𝑗) + (𝐺(𝑗−1:𝑘) ∙ 𝑃(𝑖:𝑗)) … … (4)

This carry is generated by the use of various cell

structures known as Gray cells, Black cells, and

Buffer cells. Final carry is calculated by using these

mentioned cells. Various parallel prefix architectures

can be designed by varying this carry generation

architecture.

Fig.3 Black Cells, Gray Cells and Buffer cell used

for carry generation stage

Final processing stage:

This stage generates the final sum based on the

propagate and carry values produced in previous

stages. Equation 5 depicts the Boolean expression.

𝑠𝑖 = 𝑝𝑖 ⊕ 𝑐𝑖−1……… (5)

Fig.4 Overall architecture of parallel prefix adder.

 ISSN 2454-9924

Different applications like linear congruential

generator, modified dual coupled linear congruential

generator and coupled variable input linear

congruential generator use three operand addition as

the fundamental unit. Among the mentioned LCG,

MDCLCG is considered as the most secure. Its

security enhances with the increasing bit width.

However as the operand size increase, the delay and

area also increases linearly. Since MDCLCG is more

secure compared to other LCG, It is widely used.

Since three operand is the basic fundamental unit, if

the performance of the three operand adder is

improved in terms of power delay and area obviously

the overall performance of MDCLCG.

 Two parallel prefix adder with two input operands or

one three-operand adder may be used to do three-

operand binary addition Operation. In various

cryptographic and Pseudo Random Bit generator

(PRBG) methods CSA is most commonly

recommended for performing three operand addition.

Fig.5 Block diagram of n-bit CSA

 The delay in the final stage of Carry save adder

(CSA) has a significant impact on the

overall performance of the modified dual CLCG

(MDCLCG) and other cryptographic

implementations on internet of things (IOT) -based

hardware systems.

Fig.6 Carry propagation chain in CSA

 In the carry save adder, all the intermediate carries

are not propagated but the final stage carry is

propagated. Hence in CSA final stage which

performs carry propagation significantly impacts the

performance.

By using these parallel prefix adders, the delay which

is the major drawback in CSA is reduced but

increases the area. In order to perform the three-

operand binary addition two operand two parallel

prefix adders can be used. The block of three operand

adder using parallel prefix adder is shown below.

Fig.7 Block diagram of three operand adder using

two parallel prefix adders

. II RELATED WORKS

Previously, carry save adder (CSA) is the most

commonly used multi operand adder (three operand).

In this adder, the although the carry is not propagated

in the intermediate stages but in the final stage carry

is propagated. Due to the carry propagation in the

 ISSN 2454-9924

final stage of CSA, the delay is more. The multi

(three in this case) operand adder is the fundamental

component in the cryptography applications and

pseudo random bit generation applications .since the

delay of this three operand adder using CSA is high,

it impacts the overall performance of the above

mentioned applications. Hence it is not considered as

the best choice. To overcome this delay drawback,

parallel prefix adders is used. The conventional

parallel prefix adders have 3 stages. In parallel prefix

adders, the computations of all the stages are

performed parallel, hence the performance in terms

of delay is improved. To design three operand

adder two parallel prefix adders are needed.

Although delay is improved, the area is the major

drawback. so in this method, three operand adder is

designed by using a new parallel architecture

compromising of 4 stages . In the third stage

(propagate and generate), a parallel prefix adder is

used. In this work, in the propagate generate stage

the Han Carlson adder is used. The block diagram of

proposed Han Carlson adder is shown below.

Fig: 8 16 bit Han Carlson adder

Although calculation of carry using this architecture,

is done parallel, From the above figure, it can be

observed that the number of black cell count is more.

Hence the hardware efficiency of that adder is less.If

the area of the basic adder is more, there will not be

any space to add the extra logic or to incorporate

more features in the chip. Hence designing an area

efficient three operand adder is the need of the day.

II. IMPLEMENTATION

In this method a four-stage parallel prefix design is

designed with sklansky adder in the third stage. The

three operand adder perform addition in 4 stages

namely Bitwise addition , base logic, propagate and

generate logic and final sum stage CSA (carry save

adder) was once one of the most widely used adder

architectures for multi-operand adds. However, the

use of CSA architecture in high-performance

applications poses a challenge. Because the carry is

propagated in the last step of the carry save adder

design, the latency is greatly affected. To get around

this, we choose to design the three operand addition

using two parallel prefix adders. Despite the fact

that the delay has been reduced, the hardware usage

has increased significantly. To further improve the

performance in terms of area and speed a four stage

parallel prefix architecture is used. Although the

performance is enhanced area is more. To overcome

this, the Han Carlson in the propagate and generate

stage is replaced with the sklansky adder in our

proposed method. The logical expressions for those

stages are shown below.

Stage-1: Bitwise Addition:

𝑠𝑖 = 𝑎𝑖 ⊕ 𝑏𝑖 ⊕ 𝑐𝑖

𝑐𝑦𝑖 = 𝑎𝑖 · 𝑏𝑖 + 𝑏𝑖 · 𝑐𝑖 + 𝑐𝑖 · 𝑎𝑖

Stage-2: Base Logic:

 𝐺𝑖:𝑖 = 𝐺𝑖 = 𝑠𝑖 · 𝑐𝑦𝑖−1

 𝐺0:0 = 𝐺0 = 𝑠0 · 𝑐𝑖𝑛

𝑃𝑖:𝑖 = 𝑃𝑖 = 𝑠𝑖 ⊕ 𝑐𝑦𝑖−1

𝑃0:0 = 𝑃0 = 𝑠0 ⊕ 𝑐𝑖𝑛

Stage-3: PG (Generate and Propagate) Logic:

𝐺𝑖:𝑗 = 𝐺𝑖:𝑘 + 𝑃𝑖:𝐾 · 𝐺𝐾−1:𝑗,

𝑃𝑖:𝑗 = 𝑃𝑖:𝑘 · 𝑃𝐾−1:𝑗

Stage-4: Final addition:

 ISSN 2454-9924

𝑆𝑖 = (𝑃𝑖 ⊕ 𝐺𝑖−1:0), 𝑆0 = 𝑃0,

𝐶𝑜𝑢𝑡 = 𝐺𝑛:0

Figure 9 depicts block diagram of the novel three-

operand binary adder. This novel adder architecture

is shown in the figure below.

Fig.9(a) Block diagram of proposed three-operand

adder

Using two xor gates and three and gates, the bit wise

addition generates the partial sum and partial carry

using inputs a,b,c. Consider the following scenario.

Assume a=1, b=1, and c=0; the partial sum and carry

will be s=0 and cy=1 since s= a xor b xor c.

The generated partial sums and carries are fed into

the proposed architecture's base logic, which is the

second step. From the partial sum and carry signals

created in the first stage, this base logic now creates

propagate and generate intermediate outputs. In the

same case as for bit wise addition, s=0,cy=1 is seen

in the preceding example. As a result, they're now

regarded inputs in the Base Logic. The results are

displayed below.

𝑃 = 𝑠 𝑥𝑜𝑟 𝑐𝑦,

𝑃 = 0𝑥𝑜𝑟1 = 1

𝐺 = 𝑠 𝑎𝑛𝑑 𝑐𝑦,

𝐺 = 0𝑎𝑛𝑑1 = 0

 Bitwise Addition Base Logic

Final addition logic

Fig.9(b)Gate level architectures for bitwise addition,

Base Logic and Final addition.

The propagate and generate signal created at the

output of the second stage is now fed into the

propagate and generate block in the third stage. This

signals are used by the propagate and generate block,

which generates the final carry. Gray and black cells,

as well as buffers, are used in the propagate and

generate block. The Han Carlson adder was

previously utilized at this level. We are replacing this

adder with the sklansky adder in our approach to

increase the area efficiency because it uses more

space..

 ISSN 2454-9924

Fig.10 Proposed 16 bit three-operand adder with

Sklansky Adder

Only gray, black, and buffer cells will be present in

any parallel prefix adder design. Both propagate and

generate must be computed for black cells. Only

generate is computed for gray cells. The output stage

receives the same input from the buffer cell.

Consider the following scenario for performing

propagates and generate stage activities. Below is a

block schematic of a 16 bit sklansky adder.

Fig.11 16 bit sklansky adder

From the figure3, it can be observed that the

transistor count of the black cell is more compared to

the gray cell. It can be clearly observed from figure 8

and 11 that the black cell count in Han Carlson adder

when compared to the sklansky adder. Since black

cell has larger gate count and Han Carlson adder has

high number of black cells, the area occupied by the

Han Carlson adder compared to sklansky adder.

hence from this, it can be observed that Han Carlson

adder is not as area efficient as sklansky adder.

Calculation procedure for black cell:

𝑃 = 𝑃𝑛−1 𝑎𝑛𝑑 𝑃𝑛

Suppose that 𝑃𝑛−1=1, and 𝑃𝑛 =0,

The output will be P=0;

Now 𝐺 = (𝐺𝑛 𝑎𝑛𝑑 𝑃𝑛−1) 𝑜𝑟 (𝑃𝑛)

Suppose that 𝐺𝑛 =1, 𝑃𝑛−1= 0, 𝑃𝑛 =1

The output will be G=1

Now these (P,G) values that are obtained are passed

as inputs to either buffer or gray cell according to the

structure. Here Pn and Gn are the present values, Pn-1

and Gn-1 are the previous state values.

Calculation procedure for gray cell:

Now 𝐺 = (𝐺𝑛 𝑎𝑛𝑑 𝑃𝑛−1) 𝑜𝑟 (𝑃𝑛)

Suppose that 𝐺𝑛 =1, 𝑃𝑛−1= 0, 𝑃𝑛 =1

The output will be G=1.Now this G is passed as the

output carry if there are no buffer cells or passed to

through the buffer and is to calculate the carry bit.

Buffer passes the same value that are given as input

either from black cell or gray cell. In the proposed

adder, Cin is considered for three-operand addition.

To generate the final sum, the propagate signal from

that block and carry signal from the previous block

are being xored .

The final addition result is calculated using the

expressions shown below.

𝑆𝑖 = (𝑃𝑖 ⊕ 𝐺𝑖−1:0),

𝑆0 = 𝑃0,

𝐶𝑜𝑢𝑡 = 𝐺𝑛:0

Let us consider an example for producing the final

sum.Let us consider the initial carry input =0, and the

propagate value that is generated from the first input

bit a0=1, then the sum will be

𝑆 = 𝑝 xor 𝑐𝑖𝑛

𝑆 = 1 xor 0=1

III. RESULTS AND DISCUSSIONS

The block diagram of 64bit three operand adder, the

technology schematic, and simulation results for the

proposed three operand adder are shown below.

Simulation results show that the proposed Sklansky

based three operand adder shows better results in

terms of area.

 ISSN 2454-9924

 Fig 11 Block diagram of proposed three operand

adder

Fig 12: Technology schematic of Proposed three

operand adder

Fig 13: Simulation output of proposed Multiplier

Method.

 Area Delay(ns)

Existing Han 462 24.7

Carlson adder

Proposed

sklansky adder

345 40.580

 Table 1: Comparison table for Existing and

Proposed methods

 Fig.14 Comparison of area between existing and

proposed multiplier

IV. CONCLUSION

In this paper, a four stage parallel prefix architecture

using sklansky in its propagate and generate stage is

designed to improve the area efficiency. Simulation

results show that the proposed adder has high

hardware efficiency when compared to other parallel

prefix three operand adders like Han-Carlson Adder

in existing method. The synthesis and simulation are

verified by using Xilinx ISE tool.

V. REFERENCES

[1] M. M. Islam, M. S. Hossain, M. K. Hasan, M.

Shahjalal, and Y. M. Jang, “FPGA implementation of

high-speed area-efficient processor for elliptic curve

point multiplication over prime field,” IEEE Access,

vol. 7, pp. 178811–178826, 2019.

[2] Z. Liu, J. GroBschadl, Z. Hu, K. Jarvinen, H.

Wang, and I. Verbauwhede, “Elliptic curve

cryptography with efficiently computable

endomorphisms and its hardware implementations for

the Internet of Things,” IEEE Trans. Comput., vol.

66, no. 5, pp. 773–785, May 2017.

 [3] Z. Liu, D. Liu, and X. Zou, “An efficient and

flexible hardware implementation of the dual-field

elliptic curve cryptographic processor,” IEEE Trans.

 ISSN 2454-9924

Ind. Electron., vol. 64, no. 3, pp. 2353–2362, Mar.

2017.

[4] B. Parhami, Computer Arithmetic: Algorithms

and Hardware Design. New York, NY, USA: Oxford

Univ. Press, 2000

 [5] P. L. Montgomery, “Modular multiplication

without trial division,” Math. Comput., vol. 44, no.

170, pp. 519–521, Apr. 1985.

[6] S.-R. Kuang, K.-Y. Wu, and R.-Y. Lu, “Low-cost

high-performance VLSI architecture for montgomery

modular multiplication,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 24, no. 2, pp. 434–

443, Feb. 2016.

[7] S.-R. Kuang, J.-P. Wang, K.-C. Chang, and H.-W.

Hsu, “Energy-efficient high-throughput montgomery

modular multipliers for RSA cryptosystems,” IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21,

no. 11, pp. 1999–2009, Nov. 2013.

[8] S. S. Erdem, T. Yanik, and A. Celebi, “A general

digit-serial architecture for montgomery modular

multiplication,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 25, no. 5, pp. 1658–1668,

May 2017.

 [9] R. S. Katti and S. K. Srinivasan, “Efficient

hardware implementation of a new pseudo-random

bit sequence generator,” in Proc. IEEE Int. Symp.

Circuits Syst., Taipei, Taiwan, May 2009, pp. 1393–

1396.

[10] A. K. Panda and K. C. Ray, “Modified dual-

CLCG method and its VLSI architecture for

pseudorandom bit generation,” IEEE Trans. Circuits

Syst. I, Reg. Papers, vol. 66, no. 3, pp. 989–1002,

Mar. 2019.

[11] A. Kumar Panda and K. Chandra Ray, “A

coupled variable input LCG method and its VLSI

architecture for pseudorandom bit generation,” IEEE

Trans. Instrum. Meas., vol. 69, no. 4, pp. 1011–1019,

Apr. 2020.

[12] N. Weste and K. Eshraghian, Principles of

CMOS VLSI Design—A Systems Perspective.

Reading, MA, USA: Addison-Wesley, 1985.

 [13] T. Kim, W. Jao, and S. Tjiang, “Circuit

optimization using carry-saveadder cells,” IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst.,

vol. 17, no. 10, pp. 974–984, Oct. 1998.

[14] A. Rezai and P. Keshavarzi, “High-throughput

modular multiplication and exponentiation

algorithms using multibit-scan–multibit-shift

technique,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 23, no. 9, pp. 1710–1719, Sep.

2015.

