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Abstract— Parallel Prefix Adders have been 

established as the most efficient circuits for binary 

addition. Their regular structure and fast performance 

makes them particularly attractive for VLSI 

implementation. In many cryptography and 

pseudorandom bit generator (PRBG) methods, the 

fundamental functional unit is a three-operand binary 

adder that performs modular arithmetic. The carry 

save adder is a popular method for doing three-

operand addition. The ripple-carry stage of the Carry 

save adder, on the other hand, results in a large 

propagation delay. Furthermore, a parallel prefix 

two-operand adder like Han-Carlson (HCA) can be 

utilized for three-operand addition, which 

significantly decreases the critical path time at the 

expense of extra hardware. In this method, for the 

purpose of three operand addition sklansky parallel 

prefix adder is used to improve performance of three 

operand adder in terms of Hardware efficiency.   

 Keywords—CSA (Carry save adder), sklansky 

adder, 

I. INTRODUCTION 

Three operand additions is the most commonly used 

in modular multiplication which are widely used in 

cryptography applications. For maintaining optimum 

system performance along with retaining physical 

security, cryptography algorithms must be 

implemented on hardware [1]. In the cryptographic 

applications, modular arithmetic is used in which the 

three operand adder is the basic block [4].  In these 

applications which involve modular arithmetic, three 

operand addition is required it is basic fundamental 

operation in these application. Hence designing an 

efficient three operand adder is the need of the day. 

With the rapid advancement in data communication, 

internet services data privacy can become an 

important issue to be dealt with. To provide security, 

cryptographic applications are mostly used. Three 

operand adders is the basic fundamental unit used in 

this cryptography applications and modular 

arithmetic. So  the  overall performance of Modular 

arithmetic and cryptographic applications depends  

on the fundamental blocks used. Based on this 

fundamental module, the performance of the top 

module varies. 

 

When the addition is done between two operands or 

two input n-bit numbers, the adder is referred to as a 

two operand adder. For implementing two operand 

operations, different types of adders named as ripple 

carry adders (RCA), parallel prefix adders (PPA), 

carry skip adders (CSKA), and so on are available. 

Consider ripple carry adder. It is the most commonly 

used adder for performing two operand addition.it is 

simply designed by cascading the 1 bit full adder 

cells. The n-bit  RCA  is depicted in the figure below. 

 

                          Fig.1 n-bit RCA 

The Major drawback in this adder is its critical path 

delay. The second full adder has wait until the first 

full adder operation is performed. Similarly for 

performing n-bit addition it has to wait until (n-1) 

operation. Hence delay is more in case of ripple carry 

adder.  

Consider carry skip adder. In this adder based on the 

skip logic, the carry will be either propagated or 

skipped. When carry is skipped the delay is 
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effectively reduced. But the carry is skipped only for 

one case. But in the remaining cases the carry is 

being propagated which significantly impacts the 

performance of the adder and only the application it 

is used. The block diagram of carry skip adder is 

shown below. 

From the figure 2, it can be observed that carry 

Propagation in the above adder is skipped only if all 

the propagate signals that are individually generated 

from all the individual full adders is logic high and 

for the other cases the carry is propagated. The 

CSKA Performance is improved compared to RCA. 

But the Speed in this adder is not as effectively 

improved. 

 

Fig.2 Logic diagram of  Carry Skip Adder(CSKA) 

Consider parallel prefix adder. In parallel prefix 

adder, the entire operation is performed in three 

stages to produce the final sum output. They are 

1. Pre-processing.  

2. Generation of carry.  

3. Final processing. 

Pre-processing: In this stage, from the inputs 

operands A and B, the propagate and generate signals 

are generated. 

𝑃𝑖 = 𝐴𝑖𝐵𝑖 … … (1) 

𝐺𝑖 = 𝐴𝑖. 𝐵𝑖 … … (2) 

 

Generation of carry: Here in this case, the using 

propagate and generate signals, the carry is generated 

for each bit. The operation performed in this stage is 

parallel. The expressions for are shown below 

𝑃(𝑖:𝑘) = 𝑃(𝑖:𝑗) ∙ 𝑃(𝑗−1:𝑘) … … (3) 

𝐺(𝑖:𝑘)  = 𝐺(𝑖:𝑗) + (𝐺(𝑗−1:𝑘) ∙  𝑃(𝑖:𝑗)) … … (4)  

 

This carry is generated by the use of various cell 

structures known as Gray cells, Black cells, and 

Buffer cells. Final carry is calculated by using these 

mentioned cells. Various parallel prefix architectures 

can be designed by varying this carry generation 

architecture. 

 

 
 

Fig.3 Black Cells, Gray Cells and Buffer cell used 

for carry generation stage 

Final processing stage: 

This stage generates the final sum based on the 

propagate and carry values produced in previous 

stages. Equation 5 depicts the Boolean expression. 

𝑠𝑖 = 𝑝𝑖 ⊕  𝑐𝑖−1……… (5) 

 

 
 

Fig.4 Overall architecture of parallel prefix adder. 
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Different applications like linear congruential 

generator, modified dual coupled linear congruential 

generator and coupled variable input linear 

congruential generator use three operand addition as 

the fundamental unit. Among the mentioned LCG, 

MDCLCG is considered as the most secure. Its 

security enhances with the increasing bit width. 

However as the operand size increase, the delay and 

area also increases linearly. Since MDCLCG is more 

secure compared to other LCG, It is widely used. 

Since three operand is the basic fundamental unit, if 

the performance of the three operand adder is 

improved in terms of power delay and area obviously 

the overall performance of MDCLCG. 

 Two parallel prefix adder with two input operands or   

one three-operand adder may be used to do three-

operand binary addition Operation. In various 

cryptographic and Pseudo Random Bit generator 

(PRBG) methods CSA is most commonly 

recommended for performing three operand addition. 

 

 
Fig.5 Block diagram of n-bit CSA 

 

 The  delay in the final stage of  Carry save adder 

(CSA)  has a significant impact on the 

overall  performance of the modified dual CLCG 

(MDCLCG) and other cryptographic 

implementations on internet of things (IOT) -based 

hardware systems. 

 
Fig.6 Carry propagation chain in CSA 

 

 In the carry save adder, all the intermediate carries 

are not propagated but the final stage carry is 

propagated. Hence in CSA final stage which 

performs carry propagation significantly impacts the 

performance. 

 

By using these parallel prefix adders, the delay which 

is the major drawback in CSA is reduced but 

increases the area. In order to perform the three-

operand binary addition two operand  two parallel 

prefix adders can be used. The block of three operand 

adder using parallel prefix adder is shown below. 

 

 

 

 
Fig.7 Block diagram of three operand adder using 

two parallel prefix adders 

 

.    II   RELATED WORKS 

 

Previously, carry save adder (CSA) is the most 

commonly used multi operand adder (three operand). 

In this adder, the although the carry is not propagated  

in the intermediate stages but in the final stage carry 

is propagated. Due to the carry propagation in the 
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final stage of CSA, the delay is more. The multi 

(three in this case) operand adder is the fundamental  

component in the cryptography applications and 

pseudo random bit generation applications .since the 

delay of this three operand adder using CSA is high, 

it impacts the overall performance of the above 

mentioned applications. Hence it is not considered as 

the best choice. To overcome this delay drawback, 

parallel prefix adders is used. The conventional 

parallel prefix adders have 3 stages. In parallel prefix 

adders, the computations of all the stages are 

performed parallel, hence the performance in terms 

of delay is improved.   To design three operand 

adder two parallel prefix adders are needed. 

Although delay is improved, the area is the major 

drawback. so in this method, three operand adder is 

designed by using a new  parallel architecture 

compromising of 4 stages . In the third stage 

(propagate and generate), a parallel prefix adder is 

used. In this work, in the propagate generate stage 

the Han Carlson adder is used. The block diagram of 

proposed Han Carlson adder is shown below.  

 

Fig: 8 16 bit Han Carlson adder 

Although calculation of carry using this architecture, 

is done parallel, From the above figure, it can be 

observed that the number of black cell count is more. 

Hence the hardware efficiency of that adder is less.If 

the area of the basic adder is more, there will not be 

any space to add the extra logic or to incorporate 

more features in the chip. Hence designing an area 

efficient three operand adder is the need of the day. 

 

II. IMPLEMENTATION 

In this method a four-stage parallel prefix design is 

designed with sklansky adder in the third stage. The 

three operand adder perform addition in 4 stages 

namely  Bitwise addition , base logic,  propagate and 

generate logic and final sum stage CSA (carry save 

adder) was once one of the most widely used adder 

architectures for multi-operand adds. However, the 

use of CSA architecture in high-performance 

applications poses a challenge. Because the carry is 

propagated in the last step of the carry save adder 

design, the latency is greatly affected. To get around 

this, we choose to design  the three operand addition 

using  two parallel  prefix adders. Despite the fact 

that the delay has been reduced, the hardware usage 

has increased significantly. To further improve the 

performance in terms of area and speed a four stage 

parallel prefix architecture is used. Although the 

performance is enhanced area is more. To overcome 

this, the Han Carlson in the propagate and generate 

stage is replaced with the sklansky adder in our 

proposed method. The logical expressions for those 

stages are shown below. 

Stage-1: Bitwise Addition:  

𝑠𝑖 = 𝑎𝑖 ⊕ 𝑏𝑖 ⊕ 𝑐𝑖 

𝑐𝑦𝑖 =  𝑎𝑖 · 𝑏𝑖 + 𝑏𝑖  · 𝑐𝑖  + 𝑐𝑖 · 𝑎𝑖 

Stage-2: Base Logic: 

                         𝐺𝑖:𝑖  =  𝐺𝑖  =  𝑠𝑖  · 𝑐𝑦𝑖−1 

                         𝐺0:0  =  𝐺0  =  𝑠0  · 𝑐𝑖𝑛 

𝑃𝑖:𝑖  =  𝑃𝑖  =  𝑠𝑖   ⊕ 𝑐𝑦𝑖−1 

𝑃0:0  =  𝑃0  =  𝑠0 ⊕  𝑐𝑖𝑛 

 

Stage-3: PG (Generate and Propagate) Logic: 

𝐺𝑖:𝑗 = 𝐺𝑖:𝑘  +  𝑃𝑖:𝐾  · 𝐺𝐾−1:𝑗, 

𝑃𝑖:𝑗  =  𝑃𝑖:𝑘  ·  𝑃𝐾−1:𝑗 

Stage-4: Final addition: 
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𝑆𝑖  = (𝑃𝑖  ⊕ 𝐺𝑖−1:0), 𝑆0  =  𝑃0, 

𝐶𝑜𝑢𝑡 =  𝐺𝑛:0 

Figure 9 depicts block diagram of the novel three-

operand binary adder. This novel adder architecture 

is shown  in the figure below. 

 

Fig.9(a) Block diagram of proposed  three-operand 

adder 

Using two xor gates and three and gates, the bit wise 

addition generates the partial sum and partial carry 

using inputs a,b,c. Consider the following scenario. 

Assume a=1, b=1, and c=0; the partial sum and carry 

will be s=0 and cy=1 since s= a xor b xor c. 

The generated partial sums and carries are fed into 

the proposed architecture's base logic, which is the 

second step. From the partial sum and carry signals 

created in the first stage, this base logic now creates 

propagate and generate intermediate outputs. In the 

same case as for bit wise addition, s=0,cy=1 is seen 

in the preceding example. As a result, they're now 

regarded inputs in the Base Logic. The results are 

displayed below. 

𝑃 = 𝑠 𝑥𝑜𝑟 𝑐𝑦, 

𝑃 = 0𝑥𝑜𝑟1 = 1 

𝐺 =  𝑠 𝑎𝑛𝑑 𝑐𝑦, 

𝐺 =  0𝑎𝑛𝑑1 = 0 

 

         Bitwise Addition      Base Logic 

 

Final addition logic                              

Fig.9(b)Gate level architectures for bitwise addition, 

Base Logic and Final addition. 

The propagate and generate signal created at the 

output of the second stage is now fed into the 

propagate and generate block in the third stage. This 

signals are used by the propagate and generate block, 

which generates the final carry. Gray and black cells, 

as well as buffers, are used in the propagate and 

generate block. The Han Carlson adder was 

previously utilized at this level. We are replacing this 

adder with the sklansky adder in our approach to 

increase the area efficiency because it uses more 

space.. 
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Fig.10 Proposed 16 bit   three-operand adder with 

Sklansky Adder 

Only gray, black, and buffer cells will be present in 

any parallel prefix adder design. Both propagate and 

generate must be computed for black cells. Only 

generate is computed for gray cells. The output stage 

receives the same input from the buffer cell. 

Consider the following scenario for performing 

propagates and generate stage activities. Below is a 

block schematic of a 16 bit sklansky adder.

 

Fig.11 16 bit sklansky adder 

From the figure3, it can be observed that the 

transistor count of the black cell is more compared to 

the gray cell. It can be clearly observed from figure 8 

and 11 that the black cell count in Han Carlson adder 

when compared to the sklansky adder. Since black 

cell has larger gate count and Han Carlson adder has 

high number of black cells, the area occupied by the 

Han Carlson adder compared to sklansky adder. 

hence from this, it can be observed that Han Carlson 

adder is not as area efficient as sklansky adder. 

Calculation procedure for black cell: 

𝑃 = 𝑃𝑛−1 𝑎𝑛𝑑 𝑃𝑛 

Suppose that  𝑃𝑛−1=1, and 𝑃𝑛 =0, 

The output will be P=0; 

Now 𝐺 =  (𝐺𝑛 𝑎𝑛𝑑 𝑃𝑛−1 ) 𝑜𝑟 (𝑃𝑛) 

Suppose that 𝐺𝑛   =1, 𝑃𝑛−1= 0, 𝑃𝑛 =1 

The output will be G=1 

Now these (P,G) values that are obtained are passed 

as inputs to either buffer or gray cell according to the 

structure. Here Pn and Gn are the present values, Pn-1 

and Gn-1 are the previous state values. 

Calculation procedure for gray cell: 

Now 𝐺 =  (𝐺𝑛 𝑎𝑛𝑑 𝑃𝑛−1 ) 𝑜𝑟 (𝑃𝑛) 

Suppose that 𝐺𝑛   =1, 𝑃𝑛−1= 0, 𝑃𝑛 =1 

The output will be G=1.Now this G is passed  as the 

output carry if there are no buffer cells or passed to 

through the buffer and is to calculate the carry bit. 

Buffer passes the same value that are given as input 

either from black cell or gray cell. In the proposed 

adder, Cin is considered for three-operand addition. 

To generate the final sum, the propagate signal  from 

that block and carry signal from the previous block 

are being  xored . 

The  final addition result  is calculated using the 

expressions shown below. 

𝑆𝑖  = (𝑃𝑖  ⊕ 𝐺𝑖−1:0),  

𝑆0  =  𝑃0,  

𝐶𝑜𝑢𝑡 =  𝐺𝑛:0 

Let us consider an example for producing the final 

sum.Let us consider the initial carry input =0, and the 

propagate value that is generated from the first input 

bit a0=1, then the sum will be  

𝑆 = 𝑝 xor 𝑐𝑖𝑛 

𝑆 = 1 xor 0=1 

 

III. RESULTS AND DISCUSSIONS 

The block diagram of 64bit three operand adder, the   

technology schematic, and simulation results for the 

proposed three operand adder are shown below. 

Simulation results show that the proposed Sklansky 

based three operand adder shows better results in 

terms of area. 
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 Fig 11 Block diagram of proposed three operand 

adder 

  

Fig 12: Technology schematic of Proposed three 

operand adder 

 

Fig 13: Simulation output of proposed Multiplier 

Method. 

 Area Delay(ns) 

Existing Han 462 24.7 

Carlson adder 

Proposed 

sklansky adder 

345 40.580 

 

  Table 1: Comparison table for Existing and 

Proposed methods 

 

 Fig.14 Comparison of area  between existing and 

proposed multiplier 

IV. CONCLUSION 

In this paper, a four stage parallel prefix architecture 

using sklansky in its propagate and generate stage is 

designed to improve the area efficiency. Simulation 

results show that the proposed adder has high 

hardware efficiency when compared to other parallel 

prefix three operand adders like Han-Carlson Adder 

in existing method. The synthesis and simulation are 

verified by using Xilinx ISE tool.  

 

V. REFERENCES 

[1] M. M. Islam, M. S. Hossain, M. K. Hasan, M. 

Shahjalal, and Y. M. Jang, “FPGA implementation of 

high-speed area-efficient processor for elliptic curve 

point multiplication over prime field,” IEEE Access, 

vol. 7, pp. 178811–178826, 2019.  

[2] Z. Liu, J. GroBschadl, Z. Hu, K. Jarvinen, H. 

Wang, and I. Verbauwhede, “Elliptic curve 

cryptography with efficiently computable 

endomorphisms and its hardware implementations for 

the Internet of Things,” IEEE Trans. Comput., vol. 

66, no. 5, pp. 773–785, May 2017. 

 [3] Z. Liu, D. Liu, and X. Zou, “An efficient and 

flexible hardware implementation of the dual-field 

elliptic curve cryptographic processor,” IEEE Trans. 



 ISSN 2454-9924  
 
Ind. Electron., vol. 64, no. 3, pp. 2353–2362, Mar. 

2017. 

[4] B. Parhami, Computer Arithmetic: Algorithms 

and Hardware Design. New York, NY, USA: Oxford 

Univ. Press, 2000 

 [5] P. L. Montgomery, “Modular multiplication 

without trial division,” Math. Comput., vol. 44, no. 

170, pp. 519–521, Apr. 1985.  

[6] S.-R. Kuang, K.-Y. Wu, and R.-Y. Lu, “Low-cost 

high-performance VLSI architecture for montgomery 

modular multiplication,” IEEE Trans. Very Large 

Scale Integr. (VLSI) Syst., vol. 24, no. 2, pp. 434–

443, Feb. 2016.  

[7] S.-R. Kuang, J.-P. Wang, K.-C. Chang, and H.-W. 

Hsu, “Energy-efficient high-throughput montgomery 

modular multipliers for RSA cryptosystems,” IEEE 

Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, 

no. 11, pp. 1999–2009, Nov. 2013.  

[8] S. S. Erdem, T. Yanik, and A. Celebi, “A general 

digit-serial architecture for montgomery modular 

multiplication,” IEEE Trans. Very Large Scale 

Integr. (VLSI) Syst., vol. 25, no. 5, pp. 1658–1668, 

May 2017. 

 [9] R. S. Katti and S. K. Srinivasan, “Efficient 

hardware implementation of a new pseudo-random 

bit sequence generator,” in Proc. IEEE Int. Symp. 

Circuits Syst., Taipei, Taiwan, May 2009, pp. 1393–

1396.  

[10] A. K. Panda and K. C. Ray, “Modified dual-

CLCG method and its VLSI architecture for 

pseudorandom bit generation,” IEEE Trans. Circuits 

Syst. I, Reg. Papers, vol. 66, no. 3, pp. 989–1002, 

Mar. 2019.  

[11] A. Kumar Panda and K. Chandra Ray, “A 

coupled variable input LCG method and its VLSI 

architecture for pseudorandom bit generation,” IEEE 

Trans. Instrum. Meas., vol. 69, no. 4, pp. 1011–1019, 

Apr. 2020.  

[12] N. Weste and K. Eshraghian, Principles of 

CMOS VLSI Design—A Systems Perspective. 

Reading, MA, USA: Addison-Wesley, 1985. 

 [13] T. Kim, W. Jao, and S. Tjiang, “Circuit 

optimization using carry-saveadder cells,” IEEE 

Trans. Comput.-Aided Design Integr. Circuits Syst., 

vol. 17, no. 10, pp. 974–984, Oct. 1998.  

[14] A. Rezai and P. Keshavarzi, “High-throughput 

modular multiplication and exponentiation 

algorithms using multibit-scan–multibit-shift 

technique,” IEEE Trans. Very Large Scale Integr. 

(VLSI) Syst., vol. 23, no. 9, pp. 1710–1719, Sep. 

2015.  

 

 


